空气从孔口吹出,在空间形成一股气流称为吹出气流或射流。据空间界壁对射流的约束条件,射流可分为自由射流(吹向无限空间)和受限射流(吹向有限空间);按射流内部温度的变化情况可分为等温射流和非等温射流;在设计热设备上方集气吸尘罩和吹吸式集气吸尘罩时,均要应用空气射流的基本理论。
(3)大容积密闭罩 一将产生粉尘的设备或地点进行全部封闭的密闭罩。它的物点是罩内容积大,可以缓冲含尘气流,减小局部正压。通过罩上的观察孔能监视设备的运行,维修设备可在罩内进行。这种密闭方式适用于多点产尘、阵发性产生和产尘气流速度大的设备或地点,如多交料点的胶带机转点等。见图3-12。
将产尘发生源密闭后,还必须从密闭罩内抽吸一定量的空气,使罩内维持一定的负压,以防污染物逸出罩外污染车间环境。
密闭罩的材料和结构形式应坚固耐用,严密性好,卸折方便。由小型型钢和薄钢板等组成的凹槽盖板适合于做成装配式结构。对于较小的密闭罩可全部采用凹槽盖板;对大型密闭罩为便于生产设备的检修,可局部采用凹槽盖板。
①根据工艺操作要求,设置必要的操作孔、检修门和观察孔,门孔应严密,关闭灵活。
(2)按截面风速计算排风量此法常用于大容积密闭罩。一般吸气口设在密闭室的上口部,其计算式如下:
⑦决定控制风速。为使有害物从飞散界限的最远点流进吸尘罩开口处,而需要的最小风速被称为控制风速。
③胶带机受料点采用托辊时,因受物料冲击会使胶带局部下陷,在胶带和密闭拦板之间形成缝隙,造成粉尘外逸。因此,受料点下的托辊密度应加大或改用托板。
②吸尘罩尽量靠近污染源并将其围罩起来。形式有密闭型、围罩型等。如果碍操作,可以将其安装在侧面,可Βιβλιοθήκη Baidu用风量较小的槽形式桌面型。
③决定吸尘罩安装的位置和排气方向。研究粉尘发生机理,考虑飞散方向、速度和临界点,用吸尘罩口患难夫妻准飞散方向。如果采用侧型或上盖型吸尘罩,要使操作人员无法进入污染源与吸尘罩之间的开口处。比空气密度大的气体可在下方吸引(见图3-9)
凹槽盖板密闭罩由许多装配单元组成,各单元的几何形状(矩形、梯形、弧形等)按实际需要决定,每个单元的边长不宜超过1.5m。每个单元由凹槽框架、密闭盖、压紧装置和密封填料等构件组成,如图3-13所示。
①凹槽宽度在加工误差允许范围内,要使盖板自由嵌入凹槽,但不宜过宽,凹槽最小宽度可按表3-2选取。
由于通过每个等速面的吸气量相等,假定点汇的吸气量为Q,等速面的半径分别为r1和平r2,相应的气流速度为 和 ,则有
由式(3-2)可见,点汇外某一点的流速与该点至吸气口距离的平方成反比。因此设计集气吸尘罩时,应尽量减少罩口逞能污染源的距离,以提高捕集效率。
②柜式罩安装活动拉门,但不得使拉门将孔口完成关闭。图3-18为常用的几种柜式罩的形式。
③柜式罩一般设在车间内或试验室,罩口气流容易受到环境的干扰,通常按推荐入口速度的计算出的排风量,再乘以1.1的安全系数。
④柜式罩不宜设在来往频繁的地段,窗口或门的附近。防止横向气流干扰。当不可能设置单独排风系统时,每个系统连接的柜式罩不应过多。最好单独设置排风系统,避免互相影响。
(1)下部排风柜式罩 当通风柜内无发热体,且产生的有害气体密度比空气大,可选用下部排风通风柜,见图3-19。
(2)上部排风柜式罩 当通风柜内产生有害气体密度比空气小,或通风柜内有发热体时,可选用上部排风通风柜,见图3-20。
(3)上、下联合排风柜式罩 当通风柜内既有发热体,又产生密度大小不等的有害气体时,应在柜内上、下部均设置排气点,并装设调节阀,以便调节上、下部排风量的比例,可选用上、下联合排风柜。上、下联合排风柜具有使用灵活的物点,但其结构较复杂。图3-21(a)所示具有上、下排风口中,采用固定导风板,使1/3的风量由上部排风口排走,2/3的风量由下部排风口排走。图3-21(b)所示具有固定的导风板,有三条排风狭缝,上、中、下各1条,各自设有风量调节板,可按不同的工艺操作情况进行调节,并使操作口风速保持均匀。一般各排风条缝口听最大开启面积相等,且为柜后垂直风道截面积的一半。排风条缝口处的风速一般取5~7.5m/s。
①柜式罩排风效果与工作口截面上风速的均匀性有关。设计要求柜口风速不小于平均风速的80%;当柜内同时产生热量时,为防止含尘气体由工作口上缘逸出,应在柜上抽气;当柜内无热量产生时,可在下部抽风。此时工作口截面上的任何一点风速不宜大于平均风速的10%,下部排风口紧靠工人台面。
为了保持罩内造成一定的负压,必须内部刊物罩内进气和排气量的总平衡。其排气量Q3等于被吸入罩内的空气量Q1和污染源气体量Q2,即Q3=Q1Q2,但是,理论上计算Q1和Q2是困难的,一般是按经验公式或计算表格来计算密闭罩的排风量。计算法如下:
②凹槽密封填料,应采用弹性好、耐用、价廉的材料,一般可用硅橡胶海绵、无石棉橡胶绳、泡沫塑料等。硅橡胶海绵压缩率不超过60%,耐温70~80℃以上,1kg可处理40×17mm的缝隙8~9m。填料可用胶粘在凹槽内。
实际上,吸气口有一定大小,气体流动也有阻力。形成吸气区气体流动的行事面不是球面而是椭球面。根据试验数据,绘制了吸气区内气流流线和速度分布,直观地表示了吸气速度和相对距离的关系,如图3-3、图3-4及图3-5所示。图3-3、3-4中的横坐标是 ( 为某点距吸气口的距离, 为吸气口直径),等速面的速度值是以吸气口流速 的百分数表示的。图3-5绘出了侧边比为1:2的矩形吸气口吸入气流的等速线,图中数值表示中心轴离吸气口的距离以及在该点气流与吸气口以速 的百分比。
③压紧装置如图3-14所示,它有四咱不同形式的联结,可根据实际需要加以组合。图中(a)为密闭盖可整个拆除的联结装置;(b)为密闭盖打开后,一端仍联在凹槽框架上的联结装置;(c)为启闭不很频繁的大密闭盖的压紧装置;(d)为经常启闭或小密闭盖的压紧装置。
(1)局部密闭罩 将设备产尘地点局部密闭,工艺设备露在外面密闭罩。其容积较小,适用于产尘气流速度较小,瞬时增压不大,且集中、连续扬尘的地点,如胶带机受料点、磨机的受料口等。见图3-10。
(2)整体密闭罩将产生粉尘的设备地点大部密闭,设备的传动部分留在外面的密闭罩、其物点是密闭罩本身为独立整体,易于密闭。通过罩上的观察孔可对设备进行监视,设备传动部分的维修。可在罩外进行。这种密闭方式适用于具有振动的设备或产尘气流速度较大的产尘地点,如振动筛等。见图3-11。
①毡封轴孔。对密闭罩上穿过设备传动轴的孔洞,可用毛毡进行密封,如图3-15所示。
③柔性连接。振动或往复移动的部件与固定部件之间,可用柔性材料进行封闭,如图3-17所示,一般采用挂胶的帆布或皮革、人造革等材料。当设备运转要求柔性连接件有较大幅度的伸缩时,连接件可做成手风琴箱形。
集气吸尘罩罩口气流运动方式有两种:一种是吸气口气流和吸入流,一种是吹气口气流的吹出流动。对集气吸尘罩多数的情况是吸气口吸入气流。
一个敞开的管口是最简单的吸气口,当吸气口口服气时,在吸气口附近形成负压,周围空气从四面八方流向吸气口,形成吸入气流或汇流。当吸气口面积较小时,可视为“点汇”。形成以吸气口为中心的径向线,和以吸气口为球心的速球面。如图3-2(a)所示。
集气吸尘罩是除尘系统的重要部分,是除尘工程设计的重要环节。集气吸尘罩的使用效果越好意味着越能满足生产和环保的要求。本章主要介绍常用集气吸尘罩的设计和排气量的计算,还介绍无罩尘源控制方法。
集气吸尘罩因生产工艺条件和操作方式的不同,形式很多,按集气吸尘罩的作用和构造,主要分为四类;密闭罩、半密闭罩、外部罩和吹吸罩。具体分类如图3-1所示。
①在吸气口附近等速面近似与吸气口平行,随离吸气口距离 的增大,逐渐变成椭圆面,而在1倍吸气口直径 处已接近为球面。因此,当 >1时可近似当作点汇,吸气量Q可按式(3-1)、式(3-2)计算。
当 =1时,该点气流速度已大约降至吸气口以速的7.5%。如图3-3所示。当 <1时,根据气流衰减规律则不同。
若在吸气口的四周加上档板,如图3-2(b)所示,吸气范围减少一半,其等速面为半球面,则吸气口听吸气量为
比较式(3-1)和式(3-3)可以看出,在同样距离上造成同样的吸气速度时,吸气口吵设挡板的吸气量比加设档板时大1倍。因此在设计外部集气罩时,应尽量减少吸气范围,以便增强控制效果。
(3)按换气次数计算法计算排风量 该方法计算较简单,关键是换气次数确定,换气次数的多少视有害物质的浓度、罩内工作情况(能见度等)而定,一般有能见度要求时换气次数应增多,否则可少。其计算式如下:
——泄漏安全系数,一般取1.05~1.10,若有活动设备,经常需拆卸时,可取1.5~2.0;
④决定开口周围的环境条件。一个侧面封闭的吸尘罩比开口四周全部自由开放的吸尘罩效果好。因此,应在不影响操作的情况下将四周围起来,尽量少吸入未污染的空气。
⑤防止吸尘罩周围的紊流。如果捕集点周围的紊流对控制风速有影响,就不能提供更大的控制风速,有时这会使吸尘罩丧失正常的作用。
等温圆射流是自由射流中的常见流型。其结构图3-6所示。圆锥的顶点称为极点,圆锥的半顶角 称为射流的扩散角。射流内的轴线速度保持不变半等于吹出速度 的一段,称为射流核心段(图3-6的AOD锥体)。由吹气口核心被冲散的这一段称为流起始面对。以起始段的端点O为顶点,吹气口为底边的锥体中,射流的基本性质(速度、温度、浓度等)均保持其原有特性。射流核心消失的断面BOE称为过渡断面。过渡断面以后称为射流基本段,射流起始段是比较短的,在工程设计中实际意义不大,在集气吸尘罩设计中常用到的等温圆射流和扁射流基本段的参数计算公式列于表3-1中。